
Monobloc and Sectional Directional Control Valves

motion and progress

Monobloc and Sectional Directional Control Valves

Contents

1	Hydraulic system	3
Mo	nobloc directional control valves	
2	Monobloc directional control valves HDM140	8
3	Monobloc directional control valves HDM11P	18
4	Monobloc directional control valves HDM11S	30
5	Monobloc directional control valves HDM18	48
6	Monobloc directional control valves HDM25	65
Se	ctional directional control valves	
7	Sectional directional control valves HDS07	79
8	Sectional directional control valves HDS11	100
9	Sectional directional control valves HDS15	137
10	Sectional directional control valves HDS20	176
11	Sectional directional control valves HDS30	197

12	Valve controls	214
13	Order designation example for monobloc control valves	214
14	Order designation example for sectional control valves	215

Monobloc control valves	Nominal Flow Rate	Sectional control valves	Nominal Flow Rate
HDM140	40 l/min	HDS07	25 l/min
HDM11P/2-3-4-5-6	45 l/min	HDS11	45 l/min
HDM11S/1-2-3-4-5-6	45 l/min	HDS15	60 l/min
HDM18/1-2-3-4	70 l/min	HDS20	80 l/min
HDM25/1-2	100 l/min	HDS30	120 l/min

1 Hydraulic system

1.1 General directions for circuit installation of system

1.1.1 Cleanliness

Before cabling pipelines, make sure that pipelines hollows are thoroughly clean (metal and flexible pipes), likewise fittings and seals.

The same care should be exercised during assembling and servicing operations, adopting clean procedures and working in an environment free of chips, swarf, dust and other possible sources.

1.1.2 Tank

The recommended tank capacity must be $2 \div 3$ times the pump flow rate Q (unit volume per minute) for intermittent duties, or $6 \div 7 \times Q$ for continuous duties, and up to $10 \div 12 \times Q$ for heavy duties with demanding continuity, pressure and temperature conditions.

The suggested temperature of the oil in the tank should not exceed 60° C (140° F); if this limit cannot be guaranteed by the dimensions of the tank alone, a heat exchanger must be installed.

1.1.3 Pipeline diameters

The oil speed must be kept within safe limits, beyond which the operation of the system could be adversely affected. As a general guide, recommendable limits are:

 0.5 ± 1.5 m/s (1.7 \pm 5 ft./s) suction

 $0.8 \div 2 \text{ m/s} (2.2 \div 6.6 \text{ ft./s}) \text{ return}$

 $2 \div 5$ m/s (6.6 ÷17 ft./s) pressure

Lower speeds are adapted for applications typified by low pressure or continuous duty.

Remember that flow speed in m/s is determined by the formula $[(Q/d^2) \times 21.2]$

where

"Q" is the flow rate in liters/min.

"d" is the internal diameter of the pipe in mm.

1.1.4 Filters

Filtration 10 micron must be assured where solenoid or pilot operated valves are in use, and \leq 30 micron in other cases. Except in certain special applications, the filter is usually assembled on the return line, that the size of element must be compatible with the maximum unloading flow rate.

1.1.5 Oil

Use only a mineral based hydraulic oil responding to ISO/ DIN 6743/4.

The system should be operated only with hydraulic oil containing anti-foaming and antioxidant additives. Other types of fluid can use serious damage and jeopardize its correct operation.

Recommended viscosity is between 20 and 120 mm²/s. Contamination levels must be no higher than class 18/15 as prescribed by ISO 4406.

Check that the oil level is correct when filling the tank.

Selection of the right viscosity range will depend principally on the temperature and filtration parameters, the oil should be changed following the first 3000 hours operation and every 5000 hours thereafter.

1.1.6 Fittings

The threaded ports of the directional control valve housing are machined to DIN 3852 form x.

Accordingly, fittings with STRAIGHT THREADED ENDS only should be used (e.g. DIN 3852 form A or B).

In the interest of safety, fittings with TAPER THREADED ENDS (e.g. DIN 3852 form C) should never be used, as these can cause deformation and cracks in the valve housing.

Our warranty conditions will be not valid in the case of tapered fittings utilization.

1.2 Directional control valves Operating and maintenance guide-lines

Always exercise the utmost care when carrying out any operation on the valves (assembling, stripping, tests) and pay scrupulous attention to cleanliness: this will prevent the valves from the risk of being seriously damaged attributable to chips, dust and other foreign matter.

When washing a machine to which valves are mounted, never expose the valves themselves to liquids containing detergents or corrosive agents, or to high pressure jets, which may damage them or cause rust and corrosion.

1.2.1 Spools assembling

The location of spools in the valve housing does not present any particular difficulty.

First, make sure the O-ring seals are faultlessly clean, then proceed to insert the spool into its socket, checking for smooth and unhindered sliding movement.

Finally, fit the seals with the relative alignment rings, then fix on the position control and the handle assembly.

1.2.2 Assembling of valve sections

Before proceeding with the assembling of sectional valves, make sure that the mounting surface is strictly flat. Start by locating all the O-rings in their respective seats, applying a light layer of grease.

The bolts must be gradually tightened by small increments up to the prescribed torque (see table chapter 1.9).

Under no circumstances attempt doing this operation without the aid of a torque wrench; the bolts must be torqued up gradually and in alternation, as excessive or unevenly applied force can cause the spools to jam.

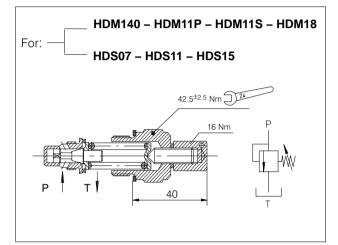
Conversely, an insufficient tightening torque can result in oil leaks and extrusion of the seals.

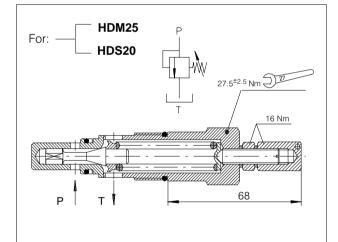
The operation of bolts tightening should be effected with oil components at ambient temperature ($20 \div 30$ C).

After completing the assembling and tightening operations, verify that the spools continue to slide freely and proceed with final testing.

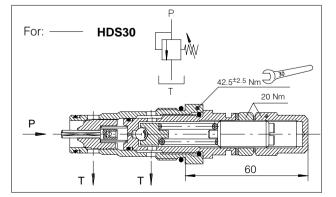
1.3 Generals

Recommended conditions for obtaining the best performance of the system: we recommend to strictly follow the conditions advised here above, failing which warranty shall be void.


1.4 Directives and standards


Atex:

The equipment and protective systems of these catalogue ARE NOT intended for use in potentially explosive atmospheres that is to say where there is an explosive atmosphere referred to in Article 2 of the Directive 99/92/EC and referred to Article 1.3 of the Directive 94/9/EC.


1.5 Main pressure relief valve RV

1.5.1 Direct Acting Relief Valve

1.5.2 Piloted Acting Relief Valve

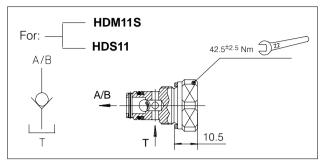
- Machinery safety

Hydraulic directional control valves are excluded by Directive 98/37/EC

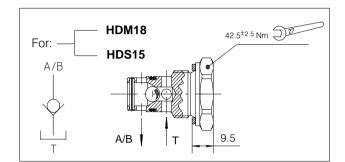
- ISO 9001: 2000

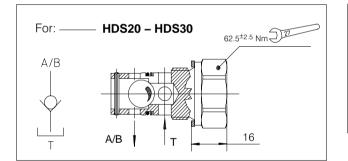
Bucher Hydraulics S.p.A. is certified for research, development and production of directional control valves, power units, gear pumps and motors, electro pumps, cartridge valves and integrated manifolds for hydraulic applications.

Pressure set range bar (PSI)	Туре	Code	Spring code
0 - 30 (0-400)	RV1 – 02	200.7874.0070.0	200.6624.0147.0
31 - 95 (400-1300)	RV1 – 06*	200.7874.0072.0	200.6624.0145.0
96 - 210 (1300-3000)	RV1 – 15	200.7874.0074.0	200.6624.0148.0
211 - 320 (3000-4600)	RV1 - 26	200.7874.0071.0	200.6624.0146.0
300 - 400 (4300-5700)	RV1 - 32	200.7874.0073.0	200.6624.0149.0
VC (plugged	d valve)	200.9784.0014.0	-

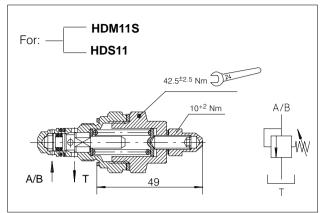

Pressure set range bar (PSI)	Туре	Code	Spring code
30 - 95 (400-1300)	RV1 – 06*	200.7874.0078.0	200.6624.0074.0
96 - 210 (1300-3000)	RV1 – 15	200.7874.0080.0	200.6624.0075.0
211 - 320 (3000-4600)	RV1 - 26	200.7874.0076.0	200.6624.0076.0
321 – 400 (4600–5700)	RV1 - 32	200.7874.0230.0	200.6624.0120.0
VC (plugged valve)		200.7784.0016.0	-

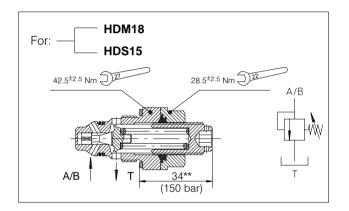
Pressure set range bar (PSI)	Туре	Code	Spring code
0 – 320 (0–4600)	RV1 – 15	200.7874.0149.0	200.6624.0111.0
VC (plugged valve)		200.7784.0023.0	-


Example: RV1 - 06*= 60 bar standard set value. Different set values have to be specified at the order. Please pay attention that any increasing/decreasing from 60 bar has to be fixed in step of 10 bar.


1.6 Anti-cavitation valves C/...

Туре	Code	
C/A or C/B	200.7876.0093.0	
VC (plugged valve)	200.7784.0004.0	


Туре	Code
C/A or C/B	200.7876.0143.0
VC (plugged valve)	200.7784.0005.0

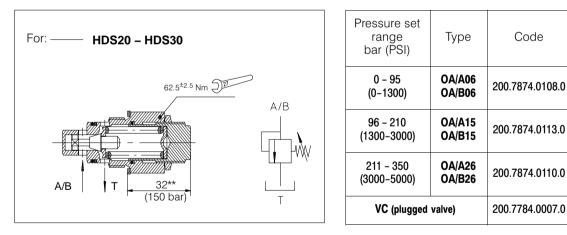

Туре	Code
C/A or C/B	200.7876.0144.0
VC (plugged valve)	200.7784.0007.0

1.7 Anti-shock valves OA/...

Pressure set range bar (PSI)	Туре	Code	Spring code
0 - 30 (0-400)	OA/A02 OA/B02	200.7874.0092.0	200.6624.0113.0
31 - 130 (400-1900)	OA/A06 OA/B06	200.7874.0094.0	200.6624.0070.0
131 – 300 (1900–4300)	OA/A15* OA/B15	200.7874.0093.0	200.6624.0077.0
VC (plugged valve)		200.7784.0004.0	-

Pressure set range bar (PSI)	Туре	Code	Spring code
0 – 130 (0–1900)	OA/A06 OA/B06	200.7874.0095.0	200.6624.0115.0
131 – 350 (1900–5000)	OA/A15 OA/B15	200.7874.0096.0	200.6624.0116.0
VC (plugged valve)		200.7784.0005.0	-

Code

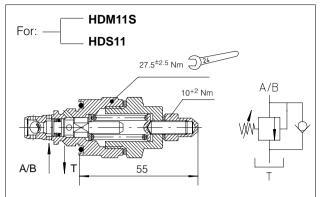

Spring code

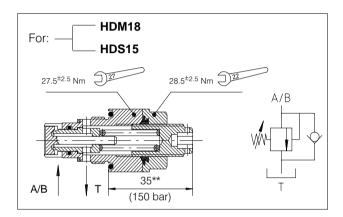
200.6624.0145.0

200.6624.0148.0

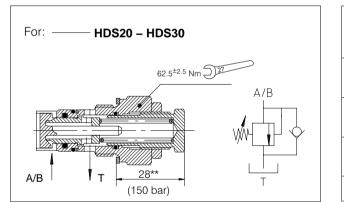
200.6624.0146.0

_




Example : OA/A15** = 150 bar standard set value. Different set values have to be specified at the order. Please pay attention that any increasing/decreasing from 150 bar has to be fixed in step of 10 bar.

** : This length changes as function of the pressure relief valve setting


1.8 Anti-shock and anti-cavitation valves UC/...

Pressure set range bar (PSI)	Туре	Code	Spring code
0 - 30 (0-400)	UC/A02 UC/B02	200.7874.0126.0	200.6624.0113.0
31 - 130 (400-1900)	UC/A06* UC/B06	200.7874.0129.0	200.6624.0070.0
131 – 300 (1900–4300)	UC/A15 UC/B15	200.7874.0127.0	200.6624.0077.0
VC (plugged valve)		200.7784.0004.0	-

Pressure set range bar (PSI)	Туре	Code	Spring code
0 - 130 (0-1900)	UC/A06 UC/B06	200.7874.0131.0	200.6624.0115.0
131 - 350 (1900-5000)	UC/A15 UC/B15	200.7874.0132.0	200.6624.0116.0
VC (plugged	l valve)	200.7784.0005.0	-

Pressure set range bar (PSI)	Туре	Code	Spring code
0 - 95 (0-1300)	UC/A06 UC/B06	200.7874.0136.0	200.6624.0105.0
96 - 210 (1300-3000)	UC/A15 UC/B15	200.7874.0138.0	200.6624.0107.0
211 - 350 (3000-5000)	UC/A26 UC/B26	200.7874.0137.0	200.6624.0106.0
VC (plugged	l valve)	200.7784.0007.0	-

Example: UC/B06*= 60 bar standard set value. Different set values have to be specified at the order. Please pay attention that any increasing/decreasing from 60 bar has to be fixed in step of 10 bar.

** : This length changes as function of the pressure relief valve setting

1.9 Tightening torque values

Component description to be assembled	Nm
Position control sleeve screwed to spool	10 + 2
End caps handles (2 X M5 screws for HDM140-HDM11-HDS11)	8 + 2
End caps handles and position control sleeves (2 X M6 screws for HDM18-HDM25-HDS15-HDS20-HDS30)	8 + 2
"HDS07- HDS11" stack (3 X M8 bolt)	16 + 2
"HDS15" stack (3 X M8 bolt)	18 + 2
"HDS20" stack (4 X M8 bolt)	20 + 5
"HDS30" stack (4 X M10 bolt)	25 + 5

12 Valve controls

12.1 Summarizing table of electro-hydraulic/ pneumatic controls

Description	Туре			HDM			HDS							
Description	туре	140	11P	11S	18	25	07	11	15	20	30			
Pneumatic ON-OFF	Р	•		•	•	•		•	•	•	•			
Pneumatic Proportional Control	PP				•	•			•	•	•			
Electro-pneumatic ON-OFF	EP				•	•			•	•	•			
Hydraulic ON-OFF	н	•		•	•	•		•	•	•	•			
Hydraulic Proportional	HP				•	•			•	•	•			
Electro-hydraulic ON-OFF internal pilot version	EHI				•				•	•	•			
Electro-hydraulic ON-OFF external pilot version	EHE				•	•			•	•	•			
Closed loop Electro-hydraulic Proportional analogic control	EHP				•	•			•	•	•			
Electromagnetic ON-OFF	EPP				•				•					
Electromagnetic ON-OFF	EMC						•	•	•					
Load sensing control	LS			•	•		•	•	•	•	•			

13 Example of designation for monobloc control valves

E	Body fea	atures				Spool f	eatures			Spool features						
HDM	**	K**	**	*	**	L**	**	A**	B**	*	**	L**	**	A**	B**	
1	2	3	4	5	6	7	8	9	10	5	6	7	8	9	10	

1	Туре
2	Number of spool
3	Type of thread
4	Setting RV

5	Spool variation
6	Spool action
7	Lever style
8	Option-Port valves (OA)
9	Setting of port (A)
10	Setting of port (B)

How to order

HDM11S 02 K10 15	A 01	L100 OA A15	B26	C 02	L100	UC A20	B20
------------------	------	-------------	-----	------	------	--------	-----

14 Example of designation for sectional control valves

14.1 Example for manual valves

HDS** ** T** ** P** ** K** * L** ** A** B** ** K** * L** 1 2 3 4 5 6 7 8 9 10 11 12 13 6 7 8 9 10	Inlet ar	nd Out	let cove	er feat	ures			S	ection	feature	es				Section features				
1 2 3 4 5 6 7 8 9 10 11 12 13 6 7 8 9 10	HDS**	**	T **	**	P**	**	K**	*	**		**	A**	B**	**	K**	*	**	L**	
	1	2	3	4	5	6	7	8	9	10	11	12	13	6	7	8	9	10	

1	Туре	6	Position of the section
2	Number of spools	7	Type of sectional body
3	Inlet and outlet cover	8	Spool variation
4	Setting RV	9	Spool action
5	End cover	10	Lever style
]	11	Option - Port valves (UC/OA/C)
		12	Setting of port (A)
		13	Setting of port (B)

How to order

|--|

14.2 Example for valves with electroma-gnetic control EMC

Inlet ar	nd Out	let cov	er feat	ures			S	ection	feature	s			Section features				
HDS**	**	T **	**	P**	**	K**	*	**	**	**	A**	B**	**	K**	*	**	**
1	2	3	4	5	6	7	8	9	10	11	12	13	6	7	8	9	10

1	Туре	6	Position of the section
2	Number of spools	7	Type of sectional body
3	Inlet and outlet cover	8	Spool variation
4	Setting RV	9	Spool action
5	End cover	10	Voltage
	J	11	Option - Port valves (UC/OA/C)
		12	Setting of port (A)
		13	Setting of port (B)

How to order

DS11 02 T09 15 P04 01 K214	AE 01E 13	OA A15 B26	02 K204 CE	03E 13
----------------------------	-----------	------------	------------	--------

How to order HDS07

HDS07	4	T10	15	P10	01	K005	AE	01E	13		02	K005	CE	01E	13	VS6/A	VS11/B
						1/005	05	04-	4.0			14405	. –	a. =	4.0		1
					03	K205	CE	01E	13	RP/AB	04	K105	AE	01E	13	TVR/AB	

14.3 Example for Load Sensing version for HDS07

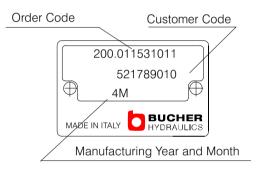
HDS07	3	T ***	26	P56	01	K055	LAE	01E	23		02	K255	LA 05E	02E	23	RP/B	VS6/B
					03	K155	LC 10E	01E	23	TOR/ AB							

14.4 Example for valves with with pressure and flow control PQ elements

HDS15	K**/* T**/*	RV1-** 00VC00	RV2-** 00VC00	RV3-** 00VC00	BP3-** 00EC	VDP-** VDPF			
1	2	3	4	5	6	7			
1	Type of dire	ectional control val	ve:	HDS15					
•	Type of sec	ctional body:		K100 (K88–K	☐ 1 = M18X1.5 ☐ 3 = 1/2"BSP				
2	Type of hea	ad:		T100 (T88–T	9 = M22X1.5				
-	STD setting	g pressure relief va	lve:	RV1-06-15-2	_				
3	Valve close	ed:		00VC00					
	STD setting	g pressure relief va	lve:	RV2-06-15-26 00VC00					
4	Valve close	ed:							
	STD setting	n pressure relief va	lve:	RV3-06-15-2	26				

_	STD setting pressure relief valve:	RV3-06-15-26
5	Valve closed:	00VC00
6	Solenoid valve By-Pass:	BP3/AE 13 HC (12 V. D.C.) BP3/CE 23 HC (24 V. D.C.)
	Solenoid valve seat closed:	00EC
7	Flow control valve adjustable setting:	VDP 06-12-25-50
•	Flow control valve fixed:	VDPF
	-	

How to order


HD	S15	K100/1	RV1 – 15	RV2 – 26	00VC00	BP3/AE 13HC	VDP06
	•••					2	

note: RV1..- RV2..- RV3..: do not indicate the valves in the order code if the section is not preset for their assembly.

Manufacturing					Man	ufacturing	year				
Month	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
January	7A	8M	9M	0M	1M	2M	ЗM	4M	5M	6M	7M
February	7B	8N	9N	0N	1N	2N	ЗN	4N	5N	6N	7N
March	7C	8P	9P	0P	1P	2P	3P	4P	5P	6P	7P
April	7D	8Q	9Q	0Q	1Q	2Q	3Q	4Q	5Q	6Q	7Q
Мау	7E	8R	9R	0R	1R	2R	3R	4R	5R	6R	7R
June	7F	8S	9S	0S	1S	2S	3S	4S	5S	6S	7S
July	7G	8T	9T	0T	1T	2T	3T	4T	5T	6T	7T
August	7H	8U	9U	0U	1U	2U	3U	4U	5U	6U	7U
September	71	8V	9V	0V	1V	2V	3V	4V	5V	6V	7V
October	7J	8Z	9Z	0Z	1Z	2Z	3Z	4Z	5Z	6Z	7Z
November	7K	8X	9X	0X	1X	2X	3X	4X	5X	6X	7X
December	7L	8Y	9Y	0Y	1Y	2Y	3Y	4Y	5Y	6Y	7Y

Product identification code

Bucher Hydraulics pursues a policy of continuos research and development, therefore the company reserve the right to modify all those technical features which need changing, whenever necessary and without prior notice.

BUCHER HYDRAULICS

Germany

Phone +49 7742 85 20 Fax +49 7742 71 16 info.de@bucherhydraulics.com

Switzerland

Phone +41 33 67 26 11 1 Fax +41 33 67 26 10 3 info.ch@bucherhydraulics.com

We reserve the right of modification without prior notice.

France

Italy

Phone +33 389 64 22 44 Fax +33 389 65 28 78

Phone +39 0522 92 84 11

Fax +39 0522 51 32 11 info.it@bucherhydraulics.com

info.fr@.bucherhydraulics.com

200 - P - 991210 - E - 03 / 10.04

Netherlands

Phone +31 79 34 26 24 4 Fax +31 79 34 26 28 8

Austria

Phone +43 6216 44 97 Fax +43 6216 44 97 4 info.at@bucherhydraulics.com Fax +86 10 64 44 32 35

UK

Phone +44 24 76 35 35 61 Fax +44 24 76 35 35 72 info.nl@bucherhydraulics.com info.uk@bucherhydraulics.com

China

Phone +86 10 64 44 32 38

www.bucherhydraulics.com

USA

Phone +1 262 605 82 80 Fax +1 262 605 82 78 info.wi@bucherhydraulics.com

Product Center (Elevator)

Phone +41 41 757 03 33 Fax +41 41 755 16 49 info.nh@bucherhydraulics.com

220/220